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We consider the magnetic response of a two-dimensional electron gas with both Rashba and Dresselhaus
spin-orbit coupling to a microwave excitation. We generalize the results of Shnirman and Martin �Europhys.
Lett. 78, 27001 �2007��, where pure Rashba coupling was studied. We observe that the microwave with the
in-plane electric field and the out-of-plane magnetic field creates an out-of-plane spin polarization. The effect
is more prominent in clean systems with resolved spin-orbit-split subbands. Considered as response to the
microwave magnetic field, the spin-orbit contribution to the magnetization far exceeds the usual Zeeman
contribution in the clean limit. The effect vanishes when the Rashba and the Dresselhaus couplings have equal
strength.
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I. INTRODUCTION

The spin-orbit effects in semiconductors have a long
history.1–3 Several years ago, the interest in the subject was
renewed by the proposal of the intrinsic spin-Hall effect,4,5

i.e., a possibility to generate a spin current in systems with
intrinsic spin-orbit coupling by applying electric field. Ini-
tially the effect was considered for conductors, e.g., for a
two-dimensional electron gas �2DEG�,4 while now the atten-
tion of the community has mostly switched to the quantum
spin-Hall effect in “topological insulators.”6,7

It has also been realized that the concept of spin current is
not as clear and useful as the concept of charge current.8 Due
to the lack of spin conservation the presence of spin current
does not necessarily lead to spin accumulation, and vice
versa. For example, it was concluded that in a 2DEG with
the Rashba and the Dresselhaus spin-orbit interactions, the
bulk spin current vanishes for constant and homogeneous
electric field.9–12 At the same time the spin accumulation at
the edges of two-dimensional �2D� samples was observed in
Refs. 13 and 14, igniting arguments whether the observed
effect was intrinsic or extrinsic.

In Ref. 15 the out-of-plane spin polarization in a 2DEG
with purely Rashba spin-orbit coupling was studied. The re-
search was motivated by a wish to determine the spin polar-
ization without using the concept of spin current and to avoid
considering spin accumulation at edges. Thus, the idea was
to create an out-of-plane inhomogeneous spin density in the
bulk in response to a spatially modulated electric field. One
can realize that for this purpose one needs a transversal elec-
tric field which necessitates a time dependence, i.e., micro-
waves. In other terms, one can consider the results of Ref. 15
as providing the spin response to a long wave �spatially ho-
mogeneous�, out-of-plane, oscillating in time magnetic field.
According to the Faraday induction law such a field creates
spatially inhomogeneous, in-plane electric field which, in
turn, creates the out-of-plane spin polarization. In the clean

limit this orbital effect of the magnetic field greatly domi-
nates over the spin polarization due to the direct Zeeman
coupling.

In this Brief Report we generalize the results of Ref. 15 to
the case where both Rashba and Dreselhaus interactions are
present, which is experimentally more relevant than the limit
considered in Ref. 15. The corresponding spin-orbit term in
the Hamiltonian reads

HSO = �R�− px�y + py�x� + �D�px�x − py�y� , �1�

where �R and �D are the strengths of the Rashba and
Dresselhaus spin-orbit couplings, respectively. It is conve-
nient to perform a � /4 rotation in both the momentum and
the spin spaces, that is px�=

px+py
�2

and py�=
−px+py

�2
, and �x�

=
�x+�y

�2
and �y�=

−�x+�y
�2

. In the new coordinates Hamiltonian
�1� reads

HSO = − ��R + �D�px��y� + ��R − �D�py��x�. �2�

In what follows we work in the rotated basis and omit the
primes as well as use the units with �=1.

Introducing the angle � via p= �p��cos � , sin �� we obtain
the energies of the two subbands given by �	�p�
= p2

2m� 	
��p�, where m� is the electron band mass, 
�

����R
2 +�D

2 ��1+W cos 2��, and W�
2�R�D

�R
2+�D

2 . For purely
Rashba �Dresselhaus� coupling W=0, while in the case of
equal coupling strengths W=1.

We consider a linearly polarized in-plane microwave field
A=A0 exp�iqr− i�t�, where A0=A0�cos � , sin � ,0� and q
=q�sin � ,−cos � ,0�. The signs are chosen so that for positive
A0 and q the vectors q ,A0 ,ez form a right-handed basis. We
also recall the standard relations E= �i� /c�A and B= iq
A.

II. KINETIC EQUATION

The technique we use here is exactly the same as in Ref.
15. It is based on the standard Kubo linear-response theory in
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Keldysh formulation.16 This technique allows one to deter-
mine the dynamics of the charge and spin densities. In the
dirty limit �to be defined below� it leads to diffusion equa-
tions for the spin and charge densities.10,17,18 However, we do
not restrict ourselves to this limit and obtain results valid
both in the clean and in the dirty cases.

For integrity we remind the main elements of the working
formalism. We employ the linear response, H=H0+H1, with

H0 =
p2

2m�
+ �p + Vdisorder, �3�

where �= �−��R+�D��y , ��R−�D��x�, and

H1 = −
e

2c
�v,A	+ −

1

2
g�BB�,

where v� p
m� +�. The first term in H1 is responsible for the

orbital effect discussed in this Brief Report. The second term
causes the usual �Pauli� spin polarization. We consider only
the s-wave disorder scattering and introduce the inverse mo-
mentum relaxation time �−1, as well as the electronic density
of states per spin �=m� / �2��.

The zeroth order in the A Green’s function, G0, contains
the standard disorder broadening

G0
R = 
1

2
+

1

2

�p


��p��G0
R+ + 
1

2
−

1

2

�p


��p��G0
R−, �4�

where G0
R	�p ,�����−�	�p�+ i / �2���−1. In equilibrium G0

K

=h����G0
R−G0

A�, where h���� tanh
�−EF

2T .
Introducing the average spin-orbit band splitting �F

� pF
��R

2 +�D
2 , we can define three regimes: �i� “superclean”

�−1��F
2m� / pF

2 =m���R
2 +�D

2 �; �ii� clean m���R
2 +�D

2 ���−1

��F; �iii� dirty �−1��F. Our results below apply both in the
clean and in the dirty regimes, but not in the “superclean”
one, i.e., our results apply for �−1��F

2m� / pF
2 .

Within the self-consistent Born approximation we find the
linear in A correction to the Green’s function, G1. Establish-
ing G1 we can calculate any single-particle quantity, i.e.,
density or current. The Keldysh component G1

K splits into
two parts, G1

K=G1
K,I+G1

K,II. The first part, G1
K,I, corresponds

to the retarded-advanced �R-A� combinations in the Kubo
formula, while G1

K,II stands for the R-R and A-A
combinations.16 The spin-charge density matrix is defined as
�̂= 1

2n�q ,��+s�q ,���=� d�
2�� d2p

�2��2 �−iG1
��=− i

2� d�
2�� d2p

�2��2 �G1
K

−G1
R+G1

A�, where n�q ,�� is the charge density while s�q ,��
is the spin density. Accordingly, it splits as �̂= �̂I+ �̂II, where
�̂I=− i

2� d�
2�� d2p

�2��2 G1
K,I and �̂II=− i

2� d�
2�� d2p

�2��2 �G1
K,II−G1

R+G1
A�.

Thus, following Ref. 16 we obtain the linear-response re-
lation

�1 − I�
�

�̂I = i��Ĩ
 e�vA	+

2c
+

1

2
g�BB�� , �5�

where the functional Ĩ is defined as

Ĩ�X�p�� =
1

m��
� d2p

�2��2G0
R�p + q/2,EF + �/2� · X�p�


G0
A�p − q/2,EF − �/2� , �6�

while I is a 4
4 matrix defined by its action on the four-

vector �̂ as I�̂= Ĩ��̂� �we just use the fact that �̂ is indepen-

dent of p to represent the functional Ĩ��̂� as a product of a
4
4 matrix I and a vector �̂�.

The second contribution to the density, �̂II, is given by
�̂II= 1

2g��BB�. Thus, the total density response follows from

�1 − I�
�

�̂ = i��Ĩ
 e�vA	+

2c
� +

�1 − �1 − i���I�
2�

g��BB�.

�7�

We allow for arbitrary external frequency �, including
���−1. However, we limit ourselves to the experimentally
relevant regime vF�q���−1. For arbitrary values of q the spin
and charge response functions to the longitudinal fields have
been recently calculated in Ref. 19.

We expand the matrix I in powers of q, I= I�0�+ I�1�+. . .. In
zeroth order in q the matrix I is diagonal, and its elements
are given by

I00
�0� =

1

a
, Izz

�0� =
a

�R
,

Ixx
�0� =

�Q + D� − b2�1 + W�
2a�R

,

Iyy
�0� =

�Q − D� − b2�1 − W�
2a�R

, �8�

where R��a2+b2�2−b4W2= �a2+ �1+W�b2��a2+ �1−W�b2�,
D��a2+b2−�R� /W, and Q��a2+b2+�R�. We have intro-
duced a�1− i�� and b�2�F�. Analyzing the path of the
complex function R��� we conclude that for �R we have to
choose the branch cut along the positive semiaxis R�0.

For the part linear in q, I�1�, we obtain the following ma-
trix elements:

Izx
�1� = − Ixz

�1� =
pF�q�� sin �

m�
izx
�1�,

Izy
�1� = − Iyz

�1� =
pF�q�� cos �

m�
izy
�1�, �9�

where

izx
�1� � −

iab�1 + W

R

a2 + b2�1 + W�
, izy

�1� �
iab�1 − W

R

a2 + b2�1 − W�
. �10�

We have neglected terms mixing the charge density with the
spin density since they are smaller by a factor of m / �pF

2��
�1 than the spin-spin terms.

Expanding the right-hand side �RHS� of Eq. �7� in powers
of q up to the linear order and neglecting again the charge-
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density term for the same reason as above we obtain an ex-
pression for the orbital term

i��Ĩ
 e�vA	+

2c
� = CE,x

�0� �x + CE,y
�0� �y + CE,z

�1��z

=
�e�E�sin �

�pF
cE,x

�0� �x +
�e�E�cos �

�pF
cE,y

�0� �y

+
�e�E��q�

m�
cE,z

�1�����z. �11�

The dimensionless coefficients contributing to the zeroth or-
der in q are given by

cE,x
�0� = −

b�1 + W��1 − W

R
�b2 − D�

4a
,

cE,y
�0� =

b�1 − W��1 + W

R
�b2 + D�

4a
, �12�

while the coefficient linear in q is

cE,z
�1���� = i�1 − W2



�b4�1 − W2� − a4�b2 − �2Wa2b4 + RD�cos 2�

4aR�R
.

�13�

Finally, the Zeeman term in the RHS of Eq. �7� reads

�1 − �1 − i���I�
2�

g��BB� =
�g�B

2�
�

j=x,y,z
�1 − aIjj

�0��Bj� j .

�14�

Note that the magnetic terms ��B= iq
A� are already of the
first order in q.

We are now in a position to calculate the spin density.
First we obtain the zeroth order in q contribution. It is given
by

sx
�0� =

�

1 − Ixx
�0�CE,x

�0� = −
�eEy

2pF

b�1 + W��1 − W�b2 − D�

2a�R − �Q + D� + b2�1 + W�
,

sy
�0� =

�

1 − Iyy
�0�CE,y

�0� =
�eEx

2pF

b�1 − W��1 + W�b2 + D�

2a�R − �Q − D� + b2�1 − W�
,

sz
�0� = 0. �15�

This is a generalization of the well-known result,2,3 meaning
that there is an in-plane spin polarization “perpendicular” to
the applied electric field �cf. Ref. 20�. For W�0 it can only
be perpendicular to E if the electric field directs along one of
the main axes x or y.

Next we calculate the first-order orbital contribution. We
obtain

sz
�1�,orbital =

�

1 − Izz
�0�CE,z

�1� −
�

1 − Izz
�0�
−

Izx
�1�

�
� �

1 − Ixx
�0�CE,x

�0�

−
�

1 − Izz
�0�
−

Izy
�1�

�
� �

1 − Iyy
�0�CE,y

�0�

=
�CE,z

�1� + Izx
�1�sx

�0� + Izy
�1�sy

�0�

1 − Izz
�0� =

�e�E��q��
m�

1

1 − Izz
�0�



cE,z
�1���� +

izx
�1�cE,x

�0� sin 2�

1 − Ixx
�0� +

izy
�1�cE,y

�0� cos 2�

1 − Iyy
�0� �

= ��BBz
me

m�� 2��

1 − Izz
�0�



cE,z
�1���� +

izx
�1�cE,x

�0� sin 2�

1 − Ixx
�0� +

izy
�1�cE,y

�0� cos 2�

1 − Iyy
�0� � ,

�16�

where �B�e / �2mec� and me is the bare electron mass.
Finally, for the Zeeman term we obtain

sz
�1�,Zeeman =

1 − aIzz
�0�

1 − Izz
�0� ·

�g�B

2
Bz. �17�

2 4 6 8 10
�Τ

50

100

150

200

Re Χ

Ν ΜB

(a)

2 4 6 8 10
�Τ

�150

�100

�50

50

100

Im Χ

Ν ΜB

(b)

FIG. 1. Real and imaginary parts of the total �orbital plus Zee-
man� spin susceptibility ��sz /Bz for 2�F�=5. Solid lines: W
=0.1, dashed lines: W=0.5, dotted lines: W=0.9. Parameters as-
sumed as in GaAs: me /m��15, g=−0.44. The results are plotted
for �=� /4 which also corresponds to the averaged over �
susceptibility.
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III. DISCUSSION

We observe that both parts of the out-of-plane spin polar-
ization sz, i.e., the orbital part given by Eq. �16� and the
Zeeman part given by Eq. �17� can be regarded as linear
response to the out-of-plane magnetic field Bz. Thus our
analysis amounts to a calculation of the susceptibility ��� ,q�
so that sz=�Bz.

We observe that in the clean limit, i.e., for �F��−1, the
orbital susceptibility greatly dominates over the Zeeman one.
As one can see in Figs. 1 and 2, for experimentally relevant
parameters, the susceptibility � exceeds the Pauli suscepti-
bility by a factor of order hundreds.

In the vicinity of W=0 we reproduce the results of Ref. 15
and the susceptibility is peaked around �=2�F. For W sub-
stantially different from zero a double-peak structure devel-
ops with the positions �=2�1	W�F=2pF��R	�D�. The
pole singularity present at W=0 splits in this case into two
square-root singularities corresponding to zeros of function
R��� at �=2�1	W�F− i /�. One or another peak is empha-
sized depending on the angle � as seen in Fig. 2.

We obtained our results for a microwave with a given
direction of the wave-vector q, i.e., for a given angle �. The
most obvious way to observe the orbital contribution to the
spin susceptibility would be by applying a homogeneous os-
cillating magnetic field Bz, e.g., by putting the sample into a
magnetic coil. Such a field corresponds to an equal superpo-
sition of plane waves with all possible wave vectors q lying
in the xy plane. To obtain the orbital spin response in this
case one should just average over �, i.e., substitute
�cos 2��=0 and �cos2 ��= �sin2 ��=1 /2. This is what we plot
in Fig. 1. Note, that for W=0, i.e., for pure Rashba or
Dresselhaus coupling, the response is � independent and the
averaging brings nothing new. On the other hand, when the
two couplings are of comparable strength, the susceptibility
strongly depends on � �see Fig. 2� and averaging over � can
change the result considerably. At W=1 the orbital suscepti-
bility vanishes.
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FIG. 2. Real and imaginary parts of the total �orbital plus Zee-
man� spin susceptibility ��sz /Bz for 2�F�=5 and W=0.5. Solid
lines: �=0, dashed lines: �=� /2, dotted lines: �=� /4. Parameters
assumed as in GaAs: me /m��15, g=−0.44.
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